On robustness in dimension determination in fused sliced inverse regression
نویسندگان
چکیده
منابع مشابه
Localized Sliced Inverse Regression
We developed localized sliced inverse regression for supervised dimension reduction. It has the advantages of preventing degeneracy, increasing estimation accuracy, and automatic subclass discovery in classification problems. A semisupervised version is proposed for the use of unlabeled data. The utility is illustrated on simulated as well as real data sets.
متن کاملStudent Sliced Inverse Regression
Sliced Inverse Regression (SIR) has been extensively used to reduce the dimension of the predictor space before performing regression. SIR is originally a model free method but it has been shown to actually correspond to the maximum likelihood of an inverse regression model with Gaussian errors. This intrinsic Gaussianity of standard SIR may explain its high sensitivity to outliers as observed ...
متن کاملSliced Regression for Dimension Reduction
By slicing the region of the response (Li, 1991, SIR) and applying local kernel regression (Xia et al., 2002, MAVE) to each slice, a new dimension reduction method is proposed. Compared with the traditional inverse regression methods, e.g. sliced inverse regression (Li, 1991), the new method is free of the linearity condition (Li, 1991) and enjoys much improved estimation accuracy. Compared wit...
متن کاملA note on shrinkage sliced inverse regression
We employ Lasso shrinkage within the context of sufficient dimension reduction to obtain a shrinkage sliced inverse regression estimator, which provides easier interpretations and better prediction accuracy without assuming a parametric model. The shrinkage sliced inverse regression approach can be employed for both single-index and multiple-index models. Simulation studies suggest that the new...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications for Statistical Applications and Methods
سال: 2018
ISSN: 2383-4757
DOI: 10.29220/csam.2018.25.5.513